大数据是继云计算、物联网之后信息产业当前科学技术创新、产业政策及国家安全领域的又次知识新增长点。
在大数据的背景下信息安全面临着很多的挑战,特别是现阶段已有的信息安全手段已经不能够满足大数据时代的信息安全的实际要求,因此研究大数据时代所面临的信息安全问题具备极其重大意义大数据的研究与应用也引起了各国政府部门的重视,成为重要的战略布局方向。
纵观国际形势,各国陆续出台大数据相关的政策及战略方案。2012年,美国奥巴马政府宣布将投资2亿美元用于启动“大数据研发倡议( Big Data Research and Development Initiative),旨在从海量繁杂的数据中萃取有用的信息。
大数据下信息安全的事件所涉及的内容日益增多,受到的危险越来越严重的。信息安全问题是需要经过多方面、多部门一起努力进行解决。
所谓大数据,即海量数据,具有信息量大、信息主体多元、更新速度快和价值密度低等特点,通常是指大量非结构化或半结构化的数据集。
其实早在几年前,数据的海量增长就引起了人们的关注,海量数据的发生、使用、储存伴随着云计算的发展等都成为了现实,“大数据”已经走入了我们的生活。
最早将大数据用于IT环境的是知名咨询公司麦肯锡,麦肯锡在研究报告中指出:如果云计算为数据资产提供了保管、访问的场所和渠道,那么如何盘活数据资产使其为国家治理、企业决策乃至个人生活服务,则是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。
从信息安全角看,大数据是指规模和格式前所未有而又相互关联的大量数据,搜集自企业的每个部分,技术人员可以对它们进行高速分析。
就像电影《黑客帝国》中的感知机器人或者《终结者》电影中的天网一样,现在的大数据环境由大规模并行处理数据库产品(不过所幸的是,它们没有自我感知能力)组成,这一些产品通过处理PB级(1015)到ZB级(1021)看似不同的数据来创建趋势和数据映射。
通过建立这种宏观层面的信息,大数据可以让企业了解到他们的产品是如何以前所未有的经济理解水平在运行。也就是说,通过以新方式来结合和分析海量数据,我们大家可以实现新的业务洞察力.
1).Volume,数据量大,据国际知名数据公司IDC提供的数据,全球数据量大约每两年翻番,人类近两年产生的数据量相当于之前产生的全部。
2).Variety,数据类型多,数据可分为结构化数据,半结构化数据和非结构化数据,相较便于存储的文本为主的结构化数据,日志,音频,视频,图片等非结构化数据,对数据处理能力提出了更高要求。
3).Value,价值密度低,价值密度的高低与数据数量成反比。例如在连续的一小时监控过程中,可能有用的数据只有一秒。如何通过强大的计算机算法更迅速的完成对有用数据的提取,是大数据背景下亟待解决的问题。
4)Velocuty,处理速度快,这是大数据相较于传统数据挖倔最显着的特征,IDC的“数字宇宙”报告预计到2020年,全球以电子形式存储的数据数量将达到35.2ZB,在如此海量的数处理效率将成为衡量技术水平的关键。
5)Complexity,复杂性加大,更提升了处理分析大数据的难度。返回搜狐,查看更加多